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Abstract. We study the breaking of parity symmetry in the 2+1 Gross-Neveu model at finite temperature
with chemical potential µ, in the presence of an external magnetic field. We find that the requirement
of gauge invariance, which is considered mandatory in the presence of gauge fields, breaks parity at any
finite temperature and provides for dynamical mass generation, preventing symmetry restoration for any
non-vanishing µ. The dynamical mass becomes negligibly small as temperature is raised.

PACS. 11.10.Kk Field theories in dimensions other than four – 11.30.Er Charge conjugation, parity,
time reversal, and other discrete symmetries – 71.27.+a Strongly correlated electron systems;
heavy fermions

1 Introduction

The study of planar fermion systems has become an active
area of research in the last years, on its own right and be-
cause of the many applications in strongly correlated elec-
tron systems as high Tc superconductors [1], quantum Hall
effect systems [2], layered graphite [3], etc. A frequent sit-
uation includes quartic fermion interaction which can be
modeled by a Gross-Neveu type Lagrangian with fermions
of zero bare mass. One of the relevant issues within this
context is the opening of a gap for the quasiparticles de-
scribed by this effective model due to self-interactions, the
presence of an external magnetic field or finite tempera-
ture and density effects.

Our main point in the present paper is that in the
presence of an external magnetic field, fermionic fields
should be quantized in a gauge-invariant framework and
hence, for an irreducible representation of two component
fermions, a parity anomaly will naturally appear [4]. The
parity breaking effect of course depends on the external
field configuration and is trivial (unobservable) in the case
of constant magnetic fields, unless a non vanishing chemi-
cal potential (µ) is considered. Previous analysis [5–8] have
either considered the case with µ = 0 or have duplicated
the number of fermion components in such a way that the
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parity anomaly cancels out. Our analysis is applicable to
generic planar fermion systems.

We show that, at finite quasi-particle density, the term
that breaks parity in the effective action changes dra-
matically the analysis of the gap equation. In particular,
the opening of a gap as a function of the external mag-
netic field occurs at any finite temperature, thus providing
for dynamical mass generation and preventing symmetry
restoration for any non-vanishing µ. It should be pointed
that the effect of this correction is of order 1/T and the
gapless behaviour is recovered at high temperatures.

2 The model

Let us consider the following (Euclidean) 3-dimensional
fermionic Lagrangian with four fermion interaction

L = ψ̄a(�∂ + ie �A+ γ0µ)ψa +
g0
2N

(ψ̄aψa)2, (1)

where a = 1, · · · , N is a flavor index and the Fermi fields
are in an irreducible two component spinor representa-
tion. This model field theory is known as the Gross-Neveu
model. The gauge field Aν (ν = 0, 1, 2) represents an ex-
ternal background that for a constant transverse magnetic
field B can be chosen as e.g. A0 = 0, Ai = −Bx2δi1.

Apart from the usual gauge invariance Aν → A
(λ)
ν =

Aν + e−1∂νλ, ψ → ψ(λ) = exp(−iλ)ψ, the theory defined
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by equation (1) is at the classical level invariant under
parity transformations, which are defined as

(x0, x1, x2) → (x0,−x1, x2),
(A0, A1, A2) → (A0,−A1, A2)

ψ → γ1ψ. (2)

Now, since in odd space-time dimensions the path inte-
gration measure cannot be defined in a way that preserves
both gauge and parity invariance, a parity violating contri-
bution can arise if one adopts a gauge invariant quantiza-
tion. Indeed, from the definition of the partition function
Z[Aν ], if Z[Aν ] = Z[A(λ)

ν ] one necessarily has to impose
invariance of the fermionic measure under gauge trans-
formations ψ → exp(−iλ)ψ. Due to the presence of an
external magnetic field we consider mandatory to quan-
tize the theory in a gauge invariant way, which then leads
to the well known parity anomaly [4].

It is also known that the parity anomaly can be over-
come by a slight change in the theory, consisting in the
use of a suitable reducible four component spinor repre-
sentation for the Fermi fields (as done in [9]). It should be
stressed that this change not merely duplicates the num-
ber of components, but does also change the interaction
term [6]. We analyze in the following the case in which
an irreducible spinor representation and a gauge invariant
regularization are chosen.

In order to study the opening of a gap in this system,
which is associated with the breaking of parity symmetry,
we use the 1/N standard procedure to compute the effec-
tive potential for the fermion system. One first introduces
an auxiliary field σ trading the quartic interaction term
for a linear σ vertex

L = ψ̄a(�∂ + ie �A+ γ0µ+ σ)ψa − N

2g0
σ2; (3)

the equation of motion for σ sets the constraint

σ =
g0
N
ψ̄aψa. (4)

Parity invariance of (3) at the classical level (or alter-
natively consistency of Eq. (4)) requires that the field σ
changes as a pseudo-scalar under parity,

σ → −σ. (5)

The breaking of parity symmetry at the quantum level
would be now signaled by a non vanishing expectation
value of the fermion condensate. Though the scalar field
σ should be integrated out at some stage of the computa-
tion, it is well known that the fermion condensate expec-
tation value can be computed to leading order in 1/N by
considering constant values for σ [10].

The effective potential is defined as

V eff
β,µ[σ] ≡ − 1

βL2
log

(∫
Dψ̄Dψ exp−

∫ β

0

dτ
∫

d2x

×
(
ψ̄a
(�∂ + ie �A+ γ0µ+ σ

)
ψa − N

2g0
σ2

))
(6)

and the vacuum expectation for the fermion condensate
can be found from its minima, that is solving the gap
equation δV eff/δσ = 0.

We distinguish two different contributions to the effec-
tive potential, one even in σ defined as

V even[σ] ≡ 1
2
(
V eff [σ] + V eff [−σ]

)
(7)

and the other odd in σ, which signals the breaking of par-
ity, defined as

V odd[σ] ≡ 1
2
(V eff [σ] − V eff [−σ]). (8)

The first contribution, V even, can be computed by any
method that assumes that V eff depends on σ2; in particu-
lar, a detailed computation was performed in [9] using the
Schwinger proper time method. The regularized result is

V even
β,µ [σ] =

N

2π

[
Λ

2
√
π

(
2
√
π

g
− 1)σ2 −

√
2
l3
ζ(−1

2
,
(σl)2

2
+ 1) − |σ|

2l2

]

− N

4πβl2

{
log (1 + exp(−2β|σ|) + 2 exp(−β|σ|) cosh(βµ))

+ 2
∞∑

n=1

log

(
1 + exp

(
−2β

√
σ2 +

2n
l2

)

+2 exp

(
−β
√
σ2 +

2n
l2

)
cosh(βµ)

)}
, (9)

where l = 1/
√|eB|, g = NΛg0/π and Λ is an UV cutoff.

The parity violating contribution to the effective ac-
tion for a fermion system at finite temperature in a gauge
background has been recently computed in exact form for
constant field strength configurations in [11]. The com-
plete expression of the parity breaking term which is gen-
erated after fermionic integration has a closed form which
reduces to the previously obtained expression [12] in a per-
turbative expansion in powers of the gauge field [11]. In
the case of zero temperature one recovers the topological
invariant Chern-Simons action. The above mentioned re-
sult, originally presented without consideration of a chemi-
cal potential, can be straightforwardly applied to the case
at hand, since the chemical potential µ in equation (6)
plays the same role as an imaginary time component of
the gauge field and a constant σ plays the role of a mass
term. In fact, replacing the time component eA0 in [11]
by iµ one gets

V odd
β,µ [σ] = − N

2πβl2
arctanh

(
tanh

(
βσ

2

)
tanh

(
βµ

2

))
·

(10)

The complete expression for the effective potential is of
course the sum of both contributions, V eff

β,µ[σ] = V even
β,µ [σ]+

V odd
β,µ [σ].
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Fig. 1. Parity conserving effective potential, showing the tran-
sition from massless to massive regime. Coupling g, magnetic
field and chemical potential are kept fixed. Higher tempera-
tures show symmetry restoration (lower curves). All quanti-
ties are measured in an arbitrary mass scale m0: V even →
πV even/m3

0, σ → σ/m0.

It is now easy to see that the term in (10) changes the
mass generation picture completely at low temperatures.
This is because it is smooth at the origin and odd in σ and
hence shifts the minimum of the effective potential away
from zero, leading to a mass gap. A numerical analysis
of the gap equation δV eff/δσ = 0 confirms that there is
no minimum at σ = 0, except at very high temperatures,
where V odd is subdominant (of order 1/T ) with respect
to the even terms.

In order to explore the meaning of Veff we show in the
following plots striking qualitative differences between the
gauge invariant and the parity conserving effective actions.
In Figure 1 we show the parity conserving effective poten-
tial for fixed magnetic field and chemical potential for a
range of temperatures where the transition between mass-
less and massive regimes is apparent. In Figure 2 we plot
the gauge invariant effective potential for the same range
of parameters, in which case the theory is always massive.
In Figure 3 we include higher temperatures so as to show
the tendency to symmetry restoration.

In all figures we plot dimensionless quantities in terms
of an arbitrary mass scale. As an example we choose
Λ =

√
π, g = 0.9

√
π, µ = 0.1 and eB = 1 [9].

3 Conclusions

In the present paper we have analyzed the consequences of
the parity anomaly on the usual picture of dynamical mass
generation (associated with parity symmetry breaking) for
planar fermions in an irreducible two component fermion
representation with quartic interactions at finite temper-
ature and density. Our main observation is that the inclu-
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Fig. 2. Complete effective potential, showing persistence of
symmetry breaking for the same range parameters of Figure 1.
Temperature grows from top to bottom. All quantities are mea-
sured in a mass scale m0: V eff → πV even/m3

0, σ → σ/m0.
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Fig. 3. Complete effective potential for a wider range of tem-
peratures, indicating the irrelevance of the parity breaking con-
tribution at high temperature (lower curve). All quantities are
measured in a mass scale m0: V eff → πV even/m3

0, σ → σ/m0.

sion of a finite chemical potential prevents the appearance
of a symmetric phase for arbitrarily small magnetic fields.
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